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FlexiDug

• Coal mining areas, such as Lusatia region, face structural 
transformations

• Digitalisation offers opportunities in growth regions

• Economic and flexible solutions for rail transport

• Reusing mining railway infrastructures

• FlexiDug has three technical focus areas: Digital Twin, Sensor Networks, 
Flexible Digital control, command and signalling (CCS)



■ Flexible 

□ Freight transport  Passenger 
transport

□ Industrial railway / Narrow-gauge 
railway

■ Digital

□ Hardware replaced by software

□ Digital version of German 
„Zugleitbetrieb“  
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Model-based Systems Engineering
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Ontology Based Systems Engineering
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Micromodels and Transformations

           

           

           

           

           

           

          

                 

               

        

          

          

  

           

            

        

        

        

                  

           

         
           

            
          

      

      

      

     

     

            
          

      

      

            
          

          
          

     
          

     
          

       
          

                 
          

     
          

              
          

         
          

              
          

         
          

                

           

           

         

             

            

                

           

               

        
          

         
          

       
          

         
          

      

         
          

     

     
          

                      

           

              

            

    

            

         

               

        

   

           

                

           

               

         

          
          

       

      

             
          

            
          

      

     
          

         
          

        
          

        
          

      
          

      
          

      

■ Clear and precise ontologies for each 
aspect

□ Components

□ Data model

□ Configuration

■ Reuse existing ontologies

□ State machines

■ Homogeneous and linkable data 
models for contextual relations

■ Transformations to other models and 
formats or source code

                      

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           
           

           

           

           

           

           

           

               

        

                 

     

               

        

    

  

      

        

               

               

               

             
     

            

              

                

      

    

        

      

          
          

            

    

     

          

         

      

    

          
          

 

               

      

       

   

      

     

     

          

    

          

          

     

            

           

       

         

           

         

Ontologies

RDF Model
Models / Source 

Code



■ Validation of model by domain experts 

■ Middleware for message exchange (DDS)

■ Virtualization through Kubernetes or docker-compose

■ Pipeline for build, test and deployment
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■ Interlocking logic

□ PlanPro model

■ Digital „Belegblatt“

□ Stations

□ Routes

■ NLU

□ Station names

■ Simulation

□ Signals and Points
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yaramo

■ The yaramo-model is a lightweight model for railway infrastructure

■ Focus on simulation and test automation

■ Model extraction from 
several data sources

■ Processors to modify the model

■ Exports and Logics
as consumers of model
instances

■ Available on GitHub: https://github.com/simulate-digital-rail/yaramo

https://github.com/simulate-digital-rail/yaramo
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■ Generic interlocking logic based on a yaramo topology

■ Supports:

■ Available on GitHub: https://github.com/simulate-digital-rail/interlocking
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Interlocking Logic

Flank Protection 
(in progress)

Infrastructure Status

Determination of 
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Generation of Overlaps

Connections to real hardware
and simulations

Asynchronous and timed
behaviour

Evaluation of infrastructure
changes

https://github.com/simulate-digital-rail/interlocking


■ Between digital dispatcher ("Zugleiter") and conductor ("Zugführer")

□ Communication via radio, other technology conceptually possible

□ Conductor → dispatcher

□ Dispatcher → conductor

■ Custom implementation

□ Mostly pre-allocated & zero-copy, DIY DSP (no framework found)

□ Nim (programming language) → C → gcc → machine code
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RadioIO



■ Safety considerations

■ Emergency stop order

■ Model Validation

Chart 13

Future Work



Thank you 
for your attention!
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