
FlexiDug: Communication with the "Zugleiter in the Cloud"

Dirk Friedenberger, Arne Boockmeyer, Lukas Pirl

18.09.2023

Chart 2

FlexiDug

• Coal mining areas, such as Lusatia region, face structural
transformations

• Digitalisation offers opportunities in growth regions

• Economic and flexible solutions for rail transport

• Reusing mining railway infrastructures

• FlexiDug has three technical focus areas: Digital Twin, Sensor Networks,
Flexible Digital control, command and signalling (CCS)

■ Flexible

□ Freight transport Passenger
transport

□ Industrial railway / Narrow-gauge
railway

■ Digital

□ Hardware replaced by software

□ Digital version of German
„Zugleitbetrieb“

Chart 3

Flexible Digital Control, Command and Signalling (CCS)

Interlocking Logic

Digital „Belegblatt“

STT/NLU

RadioIO

Field
Element

Model-based Systems Engineering

Chart 4

Ontology Based Systems Engineering

Chart 5

Lightweight RDF Model

Documentation

Code Generation Communication Protocol

Simulation

EULYNX-based
Direct Traffic Control

Chart 6

Micromodels and Transformations

■ Clear and precise ontologies for each
aspect

□ Components

□ Data model

□ Configuration

■ Reuse existing ontologies

□ State machines

■ Homogeneous and linkable data
models for contextual relations

■ Transformations to other models and
formats or source code

Ontologies

RDF Model
Models / Source

Code

■ Validation of model by domain experts

■ Middleware for message exchange (DDS)

■ Virtualization through Kubernetes or docker-compose

■ Pipeline for build, test and deployment

Chart 7

Component Model

Pipeline

Software Stack

Visual Representation for Validation

■ Interlocking logic

□ PlanPro model

■ Digital „Belegblatt“

□ Stations

□ Routes

■ NLU

□ Station names

■ Simulation

□ Signals and Points

Chart 8

Data Models

OpenStreetMap

PlanPro

RDF Model

Data Models

Chart 9

yaramo

■ The yaramo-model is a lightweight model for railway infrastructure

■ Focus on simulation and test automation

■ Model extraction from
several data sources

■ Processors to modify the model

■ Exports and Logics
as consumers of model
instances

■ Available on GitHub: https://github.com/simulate-digital-rail/yaramo

https://github.com/simulate-digital-rail/yaramo

Chart 10

Communication State Machine

Interlocking Logic

Digital „Belegblatt“

Final state
machine

Generated Code

State Machine Ontology

RDF Model

Documentation

■ Generic interlocking logic based on a yaramo topology

■ Supports:

■ Available on GitHub: https://github.com/simulate-digital-rail/interlocking
Chart 11

Interlocking Logic

Flank Protection
(in progress)

Infrastructure Status

Determination of
Infrastructure Changes

Generation of Overlaps

Connections to real hardware
and simulations

Asynchronous and timed
behaviour

Evaluation of infrastructure
changes

https://github.com/simulate-digital-rail/interlocking

■ Between digital dispatcher ("Zugleiter") and conductor ("Zugführer")

□ Communication via radio, other technology conceptually possible

□ Conductor → dispatcher

□ Dispatcher → conductor

■ Custom implementation

□ Mostly pre-allocated & zero-copy, DIY DSP (no framework found)

□ Nim (programming language) → C → gcc → machine code

Chart 12

RadioIO

■ Safety considerations

■ Emergency stop order

■ Model Validation

Chart 13

Future Work

Thank you
for your attention!

Dirk Friedenberger, Arne Boockmeyer, Lukas Pirl

18.09.2023

